Universal Quantification

Let P(x) be a predicate (propositional function).

Universally quantified sentence: For all x in the universe of discourse P(x) is true.

Using the universal quantifier \forall : $\forall x P(x)$ "for all x P(x)" or "for every x P(x)"

(Note: $\forall x P(x)$ is either true or false, so it is a proposition, not a propositional function.)

Universal Quantification

Example: Let the universe of discourse be all people

- S(x): x is a UMBC student.
- G(x): x is a genius.
- What does $\forall x (S(x) \rightarrow G(x))$ mean?

"If x is a UMBC student, then x is a genius." or "All UMBC students are geniuses."

If the universe of discourse is all UMBC students, then the same statement can be written as $\forall x G(x)$

Existential Quantification

Existentially quantified sentence: There exists an x in the universe of discourse for which P(x) is true.

Using the existential quantifier \exists : $\exists x P(x)$ "There is an x such that P(x)." "There is at least one x such that P(x)."

(Note: $\exists x P(x)$ is either true or false, so it is a proposition, but no propositional function.)

Existential Quantification

Example: P(x): x is a UMBC professor. G(x): x is a genius.

What does $\exists x (P(x) \land G(x)) \text{ mean } ?$

"There is an x such that x is a UMBC professor and x is a genius."

or

"At least one UMBC professor is a genius."

Quantification

Another example: Let the universe of discourse be the real numbers. What does $\forall x \exists y (x + y = 320) \text{ mean } ?$ "For every x there exists a y so that x + y = 320." Is it true? yes Is it true for the natural numbers? no

Disproof by Counterexample

A counterexample to $\forall x P(x)$ is an object c so that P(c) is false.

Statements such as $\forall x (P(x) \rightarrow Q(x))$ can be disproved by simply providing a counterexample.

Statement: "All birds can fly." Disproved by counterexample: Penguin.

Spring 2003

 $\neg(\forall x P(x))$ is logically equivalent to $\exists x (\neg P(x))$. $\neg(\exists x P(x))$ is logically equivalent to $\forall x (\neg P(x))$. See Table 2 in Section 1.3. This is de Morgan's law for quantifiers

Examples

Not all roses are red $\neg \forall x (Rose(x) \rightarrow Red(x))$ $\exists x (Rose(x) \land \neg Red(x))$ Nobody is perfect $\neg \exists x (Person(x) \land Perfect(x))$ $\forall x (Person(x) \rightarrow \neg Perfect(x))$

Nested Quantifier

A predicate can have more than one variables.

- S(x, y, z): z is the sum of x and y
- F(x, y): x and y are friends

We can quantify individual variables in different ways

- $\forall x, y, z (S(x, y, z) \rightarrow (x \leq z \land y \leq z))$

- $\exists x \forall y \forall z (F(x, y) \land F(x, z) \land (y \models z) \rightarrow \neg F(y, z)$

Nested Quantifier

Exercise: translate the following English sentence into logical expression "There is a rational number in between every

pair of distinct rational numbers"

Use predicate Q(x), which is true when x is a rational number

 $\forall x, y (Q(x) \land Q(y) \land (x < y) \rightarrow \\ \exists u (Q(u) \land (x < u) \land (u < y)))$

Summary, Sections 1.3, 1.4

- Propositional functions (predicates)
- Universal and existential quantifiers, and the duality of the two
- When predicates become propositions
 - All of its variables are instantiated
 - All of its variables are quantified
- Nested quantifiers
 - Quantifiers with negation
- Logical expressions formed by predicates, operators, and quantifiers

Let's proceed to ...

Mathematical Reasoning

Mathematical Reasoning

We need mathematical reasoning to

- determine whether a mathematical argument is correct or incorrect and
- construct mathematical arguments.

Mathematical reasoning is not only important for conducting proofs and program verification, but also for artificial intelligence systems (drawing logical inferences from knowledge and facts).

We focus on deductive proofs

An **axiom** is a basic assumption about mathematical structure that needs no proof.

- Things known to be true (facts or proven theorems)
- Things believed to be true but cannot be proved

We can use a **proof** to demonstrate that a particular statement is true. A proof consists of a sequence of statements that form an argument.

The steps that connect the statements in such a sequence are the rules of inference.

Cases of incorrect reasoning are called **fallacies**.

Terminology

A theorem is a statement that can be shown to be true.

A lemma is a simple theorem used as an intermediate result in the proof of another theorem.

A corollary is a proposition that follows directly from a theorem that has been proved.

A conjecture is a statement whose truth value is unknown. Once it is proven, it becomes a theorem.

Proofs

A theorem often has two parts

- Conditions (premises, hypotheses)

- conclusion

A correct (deductive) proof is to establish that

- If the conditions are true then the conclusion is true
- I.e., Conditions \rightarrow conclusion is a tautology

Often there are missing pieces between conditions and conclusion. Fill it by an argument

- Using conditions and axioms
- Statements in the argument connected by proper rules of inference